Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
2.
Methods Mol Biol ; 2785: 221-260, 2024.
Article in English | MEDLINE | ID: mdl-38427197

ABSTRACT

Recent research has revealed the potential of lipidomics and metabolomics in identifying new biomarkers and mechanistic insights for neurodegenerative disorders. To contribute to this promising area, we present a detailed protocol for conducting an integrated lipidomic and metabolomic profiling of brain tissue and biofluid samples. In this method, a single-phase methanol extraction is employed for extracting both nonpolar and highly polar lipids and metabolites from each biological sample. The extracted samples are then subjected to liquid chromatography-mass spectrometry-based assays to provide relative or semiquantitative measurements for hundreds of selected lipids and metabolites per sample. This high-throughput approach enables the generation of new hypotheses regarding the mechanistic and functional significance of lipid and metabolite alterations in neurodegenerative disorders while also facilitating the discovery of new biomarkers to support drug development.


Subject(s)
Lipidomics , Neurodegenerative Diseases , Humans , Chromatography, Liquid/methods , Lipids , Metabolomics/methods , Biomarkers/metabolism , Brain/metabolism
3.
Metabolites ; 14(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38248849

ABSTRACT

Blood serves as the primary global biological matrix for health surveillance, disease diagnosis, and response to drug treatment, holding significant promise for personalized medicine. The diverse array of lipids and metabolites in the blood provides a snapshot of both physiological and pathological processes, with many routinely monitored during conventional wellness checks. The conventional method involves intravenous blood collection, extracting a few milliliters via venipuncture, a technique limited to clinical settings due to its dependence on trained personnel. Microsampling methods have evolved to be less invasive (collecting ≤150 µL of capillary blood), user-friendly (enabling self-collection), and suitable for remote collection in longitudinal studies. Dried blood spot (DBS), a pioneering microsampling technique, dominates clinical and research domains. Recent advancements in device technology address critical limitations of classical DBS, specifically variations in hematocrit and volume. This review presents a comprehensive overview of state-of-the-art microsampling devices, emphasizing their applications and potential for monitoring metabolites and lipids in blood. The scope extends to diverse areas, encompassing population studies, nutritional investigations, drug discovery, sports medicine, and multi-omics research.

4.
Drug Discov Today ; 28(10): 103751, 2023 10.
Article in English | MEDLINE | ID: mdl-37640150

ABSTRACT

Metabolomics and lipidomics have an increasingly pivotal role in drug discovery and development. In the context of drug discovery, monitoring changes in the levels or composition of metabolites and lipids relative to genetic variations yields functional insights, bolstering human genetics and (meta)genomic methodologies. This approach also sheds light on potential novel targets for therapeutic intervention. In the context of drug development, metabolite and lipid biomarkers contribute to enhanced success rates, promising a transformative impact on precision medicine. In this review, we deviate from analytical chemist-focused perspectives, offering an overview tailored to drug discovery. We provide introductory insight into state-of-the-art mass spectrometry (MS)-based metabolomics and lipidomics techniques utilized in drug discovery and development, drawing from the collective expertise of our research teams. We comprehensively outline the application of metabolomics and lipidomics in advancing drug discovery and development, spanning fundamental research, target identification, mechanisms of action, and the exploration of biomarkers.


Subject(s)
Lipidomics , Lipids , Humans , Lipids/chemistry , Metabolomics/methods , Biomarkers/metabolism , Drug Discovery
5.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131734

ABSTRACT

Progranulin (PGRN) deficiency is linked to neurodegenerative diseases including frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and neuronal ceroid lipofuscinosis. Proper PGRN levels are critical to maintain brain health and neuronal survival, however the function of PGRN is not well understood. PGRN is composed of 7.5 tandem repeat domains, called granulins, and is proteolytically processed into individual granulins inside the lysosome. The neuroprotective effects of full-length PGRN are well-documented, but the role of granulins is still unclear. Here we report, for the first time, that expression of single granulins is sufficient to rescue the full spectrum of disease pathology in mice with complete PGRN deficiency (Grn-/-). Specifically, rAAV delivery of either human granulin-2 or granulin-4 to Grn-/- mouse brain ameliorates lysosome dysfunction, lipid dysregulation, microgliosis, and lipofuscinosis similar to full-length PGRN. These findings support the idea that individual granulins are the functional units of PGRN, likely mediate neuroprotection within the lysosome, and highlight their importance for developing therapeutics to treat FTD-GRN and other neurodegenerative diseases.

6.
Mol Neurodegener ; 17(1): 41, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690868

ABSTRACT

BACKGROUND: Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-ß pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aß content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aß content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION: Our findings demonstrate that fibrillar Aß in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloidosis/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid/pathology , Receptors, GABA/metabolism
7.
Sci Transl Med ; 14(648): eabj2658, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35675433

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic risk factors for Parkinson's disease (PD). Increased LRRK2 kinase activity is thought to impair lysosomal function and may contribute to the pathogenesis of PD. Thus, inhibition of LRRK2 is a potential disease-modifying therapeutic strategy for PD. DNL201 is an investigational, first-in-class, CNS-penetrant, selective, ATP-competitive, small-molecule LRRK2 kinase inhibitor. In preclinical models, DNL201 inhibited LRRK2 kinase activity as evidenced by reduced phosphorylation of both LRRK2 at serine-935 (pS935) and Rab10 at threonine-73 (pT73), a direct substrate of LRRK2. Inhibition of LRRK2 by DNL201 demonstrated improved lysosomal function in cellular models of disease, including primary mouse astrocytes and fibroblasts from patients with Gaucher disease. Chronic administration of DNL201 to cynomolgus macaques at pharmacologically relevant doses was not associated with adverse findings. In phase 1 and phase 1b clinical trials in 122 healthy volunteers and in 28 patients with PD, respectively, DNL201 at single and multiple doses inhibited LRRK2 and was well tolerated at doses demonstrating LRRK2 pathway engagement and alteration of downstream lysosomal biomarkers. Robust cerebrospinal fluid penetration of DNL201 was observed in both healthy volunteers and patients with PD. These data support the hypothesis that LRRK2 inhibition has the potential to correct lysosomal dysfunction in patients with PD at doses that are generally safe and well tolerated, warranting further clinical development of LRRK2 inhibitors as a therapeutic modality for PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Animals , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Lysosomes/metabolism , Mice , Mutation , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Phosphorylation
8.
Mass Spectrom Rev ; 41(5): 722-765, 2022 09.
Article in English | MEDLINE | ID: mdl-33522625

ABSTRACT

Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.


Subject(s)
Ion Mobility Spectrometry , Lipidomics , Ion Mobility Spectrometry/methods , Lipids/analysis , Mass Spectrometry/methods , Metabolomics/methods
9.
Methods Mol Biol ; 2396: 117-136, 2022.
Article in English | MEDLINE | ID: mdl-34786680

ABSTRACT

Analysis of volatile compounds in fruits and plants can be a challenging task as they present in a large amount with structural diversity and high aroma threshold, the information on molecular ion can be very useful for compound identification. Electron ionization gas-chromatography-mass spectrometry (EI-GC-MS) which is widely used for the analysis of plant volatiles has a certain limitation providing the limited capability to characterize novel metabolites in a complex biological matrix due to hard fragmentation level. Atmospheric pressure ionization using APGC source in combination with high-resolution time-of-flight mass spectrometry (TOF-MS) provides an excellent combination of GC with high-resolution mass spectrometry. The APGC-MS approach provides several advantages over the conventional EI and CI based GC-MS techniques in metabolomics studies due to highly reduced fragmentation, which preserves molecular ion, and accurate mass measurement by HRMS allows to deduce the elemental composition of the volatile compounds. Moreover, the use of MSE mode provides spectral similarity to EI in high-energy mode which can be used for the further confirmation of metabolite identity. We describe an APGC-MS-based untargeted metabolomics approach with a case study of grape volatile compounds and the development of a spectral library for metabolite identification.


Subject(s)
Vitis , Atmospheric Pressure , Fruit , Gas Chromatography-Mass Spectrometry , Metabolomics
10.
Methods Mol Biol ; 2396: 137-159, 2022.
Article in English | MEDLINE | ID: mdl-34786681

ABSTRACT

Mass spectrometry (MS)-based metabolomics approaches have been used for characterizing the metabolite content and composition of biological samples in drug discovery and development, as well as in metabolic engineering, and food and plant sciences applications. Here, we describe a protocol routinely used in our laboratory to conduct a metabolic profiling of small polar metabolites from biological samples. Metabolites can be extracted from each sample using a methanol-based single-phase extraction procedure. The combination of LC-based hydrophilic interaction liquid chromatography (HILIC) and a hybrid quadrupole-time of flight (Q-ToF) mass spectrometer allows the comprehensive analysis of small polar metabolites including sugars, phosphorylated compounds, purines and pyrimidines, nucleotides, nucleosides, acylcarnitines, carboxylic acids, hydrophilic vitamins and amino acids. Retention times and accurate masses of metabolites involved in key metabolic pathways are annotated for routine high-throughput screening in both untargeted and targeted metabolomics analyses.


Subject(s)
High-Throughput Screening Assays , Metabolomics , Chromatography, High Pressure Liquid , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Metabolome
11.
Cell ; 184(18): 4651-4668.e25, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450028

ABSTRACT

GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.


Subject(s)
Biological Products/therapeutic use , Brain/metabolism , Lysosomal Storage Diseases/therapy , Progranulins/therapeutic use , Animals , Bone Morphogenetic Proteins/metabolism , Endosomes/metabolism , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/cerebrospinal fluid , Gliosis/complications , Gliosis/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/pathology , Lipid Metabolism , Lipofuscin/metabolism , Lysosomes/metabolism , Macrophages/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Nerve Degeneration/pathology , Phenotype , Progranulins/deficiency , Progranulins/metabolism , Receptors, Immunologic/metabolism , Receptors, Transferrin/metabolism , Tissue Distribution
12.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348903

ABSTRACT

Gangliosides constitute a subgroup of glycosphingolipids characterized by the presence of sialic acid residues in their structure. As constituents of cellular membranes, in particular of raft microdomains, they exert multiple functions, some of them capital in cell homeostasis. Their presence in cells is tightly regulated by a balanced expression and function of the enzymes responsible for their biosynthesis, ganglioside synthases, and their degradation, glycosidases. The dysregulation of their abundance results in rare and common diseases. In this review, we make a point on the relevance of gangliosides and some of their metabolic precursors, such as ceramides, in the function of podocytes, the main cellular component of the glomerular filtration barrier, as well as their implications in podocytopathies. The results presented in this review suggest the pertinence of clinical lipidomic studies targeting these metabolites.


Subject(s)
Cell Membrane/metabolism , Gangliosides/metabolism , Glomerular Filtration Barrier/metabolism , Podocytes/pathology , Animals , Humans , Podocytes/metabolism
13.
Neurology ; 95(24): e3428-e3437, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32999056

ABSTRACT

OBJECTIVE: To identify markers of resistance to developing Parkinson disease (PD) among LRRK2 mutation carriers (LRRK2+), we carried out metabolomic profiling in individuals with PD and unaffected controls (UC), with and without the LRRK2 mutation. METHODS: Plasma from 368 patients with PD and UC in the LRRK2 Cohort Consortium (LCC), comprising 118 LRRK2+/PD+, 115 LRRK2+/UC, 70 LRRK2-/PD+, and 65 LRRK2-/UC, and CSF available from 68 of them, were analyzed by liquid chromatography with mass spectrometry. For 282 analytes quantified in plasma and CSF, we assessed differences among the 4 groups and interactions between LRRK2 and PD status, using analysis of covariance models adjusted by age, study site cohort, and sex, with p value corrections for multiple comparisons. RESULTS: Plasma caffeine concentration was lower in patients with PD vs UC (p < 0.001), more so among LRRK2+ carriers (by 76%) than among LRRK2- participants (by 31%), with significant interaction between LRRK2 and PD status (p = 0.005). Similar results were found for caffeine metabolites (paraxanthine, theophylline, 1-methylxanthine) and a nonxanthine marker of coffee consumption (trigonelline) in plasma, and in the subset of corresponding CSF samples. Dietary caffeine was also lower in LRRK2+/PD+ compared to LRRK2+/UC with significant interaction effect with the LRRK2+ mutation (p < 0.001). CONCLUSIONS: Metabolomic analyses of the LCC samples identified caffeine, its demethylation metabolites, and trigonelline as prominent markers of resistance to PD linked to pathogenic LRRK2 mutations, more so than to idiopathic PD. Because these analytes are known both as correlates of coffee consumption and as neuroprotectants in animal PD models, the findings may reflect their avoidance by those predisposed to develop PD or their protective effects among LRRK2 mutation carriers.


Subject(s)
Alkaloids/blood , Caffeine/blood , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Neuroprotective Agents/blood , Parkinson Disease/blood , Parkinson Disease/genetics , Aged , Alkaloids/cerebrospinal fluid , Caffeine/cerebrospinal fluid , Chromatography, Liquid , Cohort Studies , Female , Heterozygote , Humans , Male , Mass Spectrometry , Metabolomics , Middle Aged , Neuroprotective Agents/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Theophylline/blood , Theophylline/cerebrospinal fluid , Xanthines/blood , Xanthines/cerebrospinal fluid
14.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751752

ABSTRACT

We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.


Subject(s)
Biomarkers/metabolism , Glycosaminoglycans/isolation & purification , Iduronate Sulfatase/genetics , Mucopolysaccharidosis II/diagnosis , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain/pathology , Chromatography, Liquid , Dermatan Sulfate/pharmacology , Disaccharides/chemistry , Disease Models, Animal , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Heparitin Sulfate/pharmacology , Humans , Iduronate Sulfatase/metabolism , Mice , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/pathology , Tandem Mass Spectrometry
15.
Int J Mol Sci ; 21(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707880

ABSTRACT

Mucopolysaccharidosis type II is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and characterized by the accumulation of the primary storage substrate, glycosaminoglycans (GAGs). Understanding central nervous system (CNS) pathophysiology in neuronopathic MPS II (nMPS II) has been hindered by the lack of CNS biomarkers. Characterization of fluid biomarkers has been largely focused on evaluating GAGs in cerebrospinal fluid (CSF) and the periphery; however, GAG levels alone do not accurately reflect the broad cellular dysfunction in the brains of MPS II patients. We utilized a preclinical mouse model of MPS II, treated with a brain penetrant form of IDS (ETV:IDS) to establish the relationship between markers of primary storage and downstream pathway biomarkers in the brain and CSF. We extended the characterization of pathway and neurodegeneration biomarkers to nMPS II patient samples. In addition to the accumulation of CSF GAGs, nMPS II patients show elevated levels of lysosomal lipids, neurofilament light chain, and other biomarkers of neuronal damage and degeneration. Furthermore, we find that these biomarkers of downstream pathology are tightly correlated with heparan sulfate. Exploration of the responsiveness of not only CSF GAGs but also pathway and disease-relevant biomarkers during drug development will be crucial for monitoring disease progression, and the development of effective therapies for nMPS II.


Subject(s)
Brain/metabolism , Glycosaminoglycans/metabolism , Iduronate Sulfatase/metabolism , Lipid Metabolism , Lysosomes/metabolism , Mucopolysaccharidosis II/blood , Mucopolysaccharidosis II/cerebrospinal fluid , Adolescent , Animals , Biomarkers/metabolism , Brain/pathology , Child , Child, Preschool , Dermatan Sulfate/blood , Dermatan Sulfate/cerebrospinal fluid , Dermatan Sulfate/metabolism , Enzyme Replacement Therapy , Female , Gangliosides/metabolism , Glycosaminoglycans/cerebrospinal fluid , Hematopoietic Stem Cell Transplantation , Heparitin Sulfate/blood , Heparitin Sulfate/cerebrospinal fluid , Heparitin Sulfate/metabolism , Humans , Iduronate Sulfatase/genetics , Iduronate Sulfatase/pharmacology , Infant , Inflammation/metabolism , Lysosomes/pathology , Male , Mass Spectrometry , Mice , Mice, Knockout , Mucopolysaccharidosis II/metabolism , Mucopolysaccharidosis II/therapy , Neurofilament Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
16.
Nat Neurosci ; 23(8): 927-938, 2020 08.
Article in English | MEDLINE | ID: mdl-32514138

ABSTRACT

Human genetic data indicate that microglial dysfunction contributes to the pathology of Alzheimer's disease (AD), exemplified by the identification of coding variants in triggering receptor expressed on myeloid cells 2 (TREM2) and, more recently, in PLCG2, a phospholipase-encoding gene expressed in microglia. Although studies in mouse models have implicated specific Trem2-dependent microglial functions in AD, the underlying molecular mechanisms and translatability to human disease remain poorly defined. In this study, we used genetically engineered human induced pluripotent stem cell-derived microglia-like cells to show that TREM2 signals through PLCγ2 to mediate cell survival, phagocytosis, processing of neuronal debris, and lipid metabolism. Loss of TREM2 or PLCγ2 signaling leads to a shared signature of transcriptional dysregulation that underlies these phenotypes. Independent of TREM2, PLCγ2 also signals downstream of Toll-like receptors to mediate inflammatory responses. Therefore, PLCγ2 activity regulates divergent microglial functions via distinct TREM2-dependent and -independent signaling and might be involved in the transition to a microglial state associated with neurodegenerative disease.


Subject(s)
Inflammation/metabolism , Membrane Glycoproteins/metabolism , Microglia/metabolism , Phospholipase C gamma/metabolism , Receptors, Immunologic/metabolism , Signal Transduction/physiology , Animals , Cell Survival/physiology , Humans , Induced Pluripotent Stem Cells/metabolism , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Neurons/metabolism , Phagocytosis/physiology , Phospholipase C gamma/genetics , Receptors, Immunologic/genetics
17.
Sci Transl Med ; 12(545)2020 05 27.
Article in English | MEDLINE | ID: mdl-32461331

ABSTRACT

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Subject(s)
Blood-Brain Barrier , Iduronate Sulfatase , Animals , Brain , Disease Models, Animal , Enzyme Replacement Therapy , Lysosomes , Mice
18.
Methods Enzymol ; 636: 93-108, 2020.
Article in English | MEDLINE | ID: mdl-32178829

ABSTRACT

Tumors are characterized by metabolic dysregulation, reprogramming, and the presence of metabolites, which can act both as energy mediators and signaling messengers. Measuring the concentration and composition of metabolites in the tumor microenvironment can help to better understand the tumor pathology and might improve therapeutic treatments. Metabolomics can provide a description of the physiological and pathological status, as well as help to identify biomarkers of the disease. Additionally, mass spectrometry-based tissue imaging techniques can show the spatial distribution of metabolites. In this chapter we present protocols for the extraction and analysis of metabolites and lipids, with emphasis on liquid chromatography-mass spectrometry and mass spectrometry imaging.


Subject(s)
Metabolomics , Tumor Microenvironment , Chromatography, Liquid , Lipids , Mass Spectrometry
19.
Neuron ; 105(5): 837-854.e9, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31902528

ABSTRACT

Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer's disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.


Subject(s)
Brain/metabolism , Cholesterol/metabolism , Macrophages/metabolism , Membrane Glycoproteins/genetics , Microglia/metabolism , Myelin Sheath/metabolism , Phagocytosis/genetics , Receptors, Immunologic/genetics , Acetyl-CoA C-Acetyltransferase/antagonists & inhibitors , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Cholesterol Esters/metabolism , Disease Models, Animal , Flow Cytometry , Humans , Induced Pluripotent Stem Cells , Lipid Metabolism/genetics , Lipidomics , Liver X Receptors/agonists , Mice , Mice, Knockout , Mice, Knockout, ApoE , RNA-Seq
20.
Cell Mol Immunol ; 17(10): 1026-1041, 2020 10.
Article in English | MEDLINE | ID: mdl-31395948

ABSTRACT

Upon their interaction with cognate antigen, T cells integrate different extracellular and intracellular signals involving basal and induced protein-protein interactions, as well as the binding of proteins to lipids, which can lead to either cell activation or inhibition. Here, we show that the selective T cell expression of CMIP, a new adapter protein, by targeted transgenesis drives T cells toward a naïve phenotype. We found that CMIP inhibits activation of the Src kinases Fyn and Lck after CD3/CD28 costimulation and the subsequent localization of Fyn and Lck to LRs. Video microscopy analysis showed that CMIP blocks the recruitment of LAT and the lipid raft marker cholera toxin B at the site of TCR engagement. Proteomic analysis identified several protein clusters differentially modulated by CMIP and, notably, Cofilin-1, which is inactivated in CMIP-expressing T cells. Moreover, transgenic T cells exhibited the downregulation of GM3 synthase, a key enzyme involved in the biosynthesis of gangliosides. These results suggest that CMIP negatively impacts proximal signaling and cytoskeletal rearrangement and defines a new mechanism for the negative regulation of T cells that could be a therapeutic target.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , CD28 Antigens/metabolism , CD3 Complex/metabolism , Cell Polarity , Cytokines/metabolism , Enzyme Activation , Glycosphingolipids/metabolism , Humans , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Membrane Microdomains/metabolism , Mice, Transgenic , Phenotype , Proteomics , Proto-Oncogene Proteins c-fyn/metabolism , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...